Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Front Immunol ; 14: 1152186, 2023.
Article in English | MEDLINE | ID: covidwho-20238642

ABSTRACT

Background Severe coronavirus disease 2019 (COVID -19) has led to severe pneumonia or acute respiratory distress syndrome (ARDS) worldwide. we have noted that many critically ill patients with COVID-19 present with typical sepsis-related clinical manifestations, including multiple organ dysfunction syndrome, coagulopathy, and septic shock. The molecular mechanisms that underlie COVID-19, ARDS and sepsis are not well understood. The objectives of this study were to analyze potential molecular mechanisms and identify potential drugs for the treatment of COVID-19, ARDS and sepsis using bioinformatics and a systems biology approach. Methods Three RNA-seq datasets (GSE171110, GSE76293 and GSE137342) from Gene Expression Omnibus (GEO) were employed to detect mutual differentially expressed genes (DEGs) for the patients with the COVID-19, ARDS and sepsis for functional enrichment, pathway analysis, and candidate drugs analysis. Results We obtained 110 common DEGs among COVID-19, ARDS and sepsis. ARG1, FCGR1A, MPO, and TLR5 are the most influential hub genes. The infection and immune-related pathways and functions are the main pathways and molecular functions of these three diseases. FOXC1, YY1, GATA2, FOXL, STAT1 and STAT3 are important TFs for COVID-19. mir-335-5p, miR-335-5p and hsa-mir-26a-5p were associated with COVID-19. Finally, the hub genes retrieved from the DSigDB database indicate multiple drug molecules and drug-targets interaction. Conclusion We performed a functional analysis under ontology terms and pathway analysis and found some common associations among COVID-19, ARDS and sepsis. Transcription factors-genes interaction, protein-drug interactions, and DEGs-miRNAs coregulatory network with common DEGs were also identified on the datasets. We believe that the candidate drugs obtained in this study may contribute to the effective treatment of COVID-19.


Subject(s)
COVID-19 , MicroRNAs , Respiratory Distress Syndrome , Sepsis , Humans , Gene Expression Profiling/methods , COVID-19/genetics , MicroRNAs/genetics , Computational Biology/methods , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/genetics , Sepsis/complications , Sepsis/drug therapy , Sepsis/genetics
2.
Crit Care ; 27(1): 110, 2023 03 13.
Article in English | MEDLINE | ID: covidwho-2263778

ABSTRACT

PURPOSE: Methylene blue (MB) has been tested as a rescue therapy for patients with refractory septic shock. However, there is a lack of evidence on MB as an adjuvant therapy, its' optimal timing, dosing and safety profile. We aimed to assess whether early adjunctive MB can reduce time to vasopressor discontinuation in patients with septic shock. METHODS: In this single-center randomized controlled trial, we assigned patients with septic shock according to Sepsis-3 criteria to MB or placebo. Primary outcome was time to vasopressor discontinuation at 28 days. Secondary outcomes included vasopressor-free days at 28 days, days on mechanical ventilator, length of stay in ICU and hospital, and mortality at 28 days. RESULTS: Among 91 randomized patients, forty-five were assigned to MB and 46 to placebo. The MB group had a shorter time to vasopressor discontinuation (69 h [IQR 59-83] vs 94 h [IQR 74-141]; p < 0.001), one more day of vasopressor-free days at day 28 (p = 0.008), a shorter ICU length of stay by 1.5 days (p = 0.039) and shorter hospital length of stay by 2.7 days (p = 0.027) compared to patients in the control group. Days on mechanical ventilator and mortality were similar. There were no serious adverse effects related to MB administration. CONCLUSION: In patients with septic shock, MB initiated within 24 h reduced time to vasopressor discontinuation and increased vasopressor-free days at 28 days. It also reduced length of stay in ICU and hospital without adverse effects. Our study supports further research regarding MB in larger randomized clinical trials. Trial registration ClinicalTrials.gov registration number NCT04446871 , June 25, 2020, retrospectively registered.


Subject(s)
Sepsis , Shock, Septic , Humans , Methylene Blue/pharmacology , Methylene Blue/therapeutic use , Vasoconstrictor Agents/therapeutic use , Sepsis/complications
3.
BMC Infect Dis ; 23(1): 63, 2023 Feb 02.
Article in English | MEDLINE | ID: covidwho-2259545

ABSTRACT

BACKGROUND: There are limited data on the treatment of blood stream infections (BSIs) in patients receiving extracorporeal membrane oxygenation (ECMO). Current guidance recommends documenting clearance only in fungal and Gram-positive BSIs. This study investigates the incidence and clinical significance of blood stream infections with positive repeat cultures (BSIPRC) in ECMO as well as clinical factors that may predict positive repeat cultures. METHODS: All BSIs in patients receiving ECMO at Brooke Army Medical Center between September 2012 and October 2021 were included in this study. BSIPRC was defined as re-isolation of the same organism on repeat blood cultures following an initial positive blood culture. RESULTS: A total of 60 patients developed 87 BSI (38.5 BSI per 1000 ECMO days). Of the 80 (92%) BSIs who had repeat blood cultures drawn, patients had BSIPRC in 35 (44%) of cases. Fever, leukocytosis, and vasopressor requirement on day of repeat culture were not associated with persistent positivity. There was no difference in survival to discharge for patients with BSIPRC as compared to single day BSI (58% vs. 63%, p = 0.78). 19% of patients with Gram-negative bacteremia had BSIPRC, and gram-negative bacteremia in general was associated with an 83% morality. CONCLUSIONS: There were no clinical findings that differentiated patients with BSIPRC from those who had a single day of positivity. BSI was associated with high mortality in patients with Gram-negative bacteremia. Given high incidence of positive repeat cultures being seen in Gram-negative BSIs, repeat blood cultures have utility for all BSIs in patients receiving ECMO.


Subject(s)
Bacteremia , Extracorporeal Membrane Oxygenation , Sepsis , Humans , Extracorporeal Membrane Oxygenation/adverse effects , Cohort Studies , Retrospective Studies , Sepsis/complications , Bacteremia/microbiology
4.
BMJ Open ; 13(4): e065613, 2023 04 03.
Article in English | MEDLINE | ID: covidwho-2276463

ABSTRACT

INTRODUCTION: Sepsis, the leading cause of acute kidney injury (AKI), is associated with a high morbidity and mortality. Alkaline phosphatase (ALP) is an endogenous detoxifying enzyme. A recombinant human ALP compound, ilofotase alfa, showed no safety or tolerability concerns in a phase 2 trial. Renal function improvement over 28 days was significantly greater in the ilofotase alfa group. Moreover, a significant relative reduction in 28-day all-cause mortality of >40% was observed. A follow-up trial has been designed to confirm these findings. METHODS AND ANALYSIS: This is a phase 3, global, multi-centre, randomised, double-blind, placebo-controlled, sequential design trial in which patients are randomly assigned to either placebo or 1.6 mg/kg ilofotase alfa. Randomisation is stratified by baseline modified Sequential Organ Failure Assessment (mSOFA) score and trial site. The primary objective is to confirm the survival benefit with ilofotase alfa by demonstrating a reduction in 28-day all-cause mortality in patients with sepsis-associated AKI requiring vasopressors. A maximum of 1400 patients will be enrolled at ∼120 sites in Europe, North America, Japan, Australia and New Zealand. Up to four interim analyses will take place. Based on predefined decision rules, the trial may be stopped early for futility or for effectiveness. In addition, patients with COVID-19 disease and patients with 'moderate to severe' chronic kidney disease are analysed as 2 separate cohorts of 100 patients each. An independent Data Monitoring Committee evaluates safety data at prespecified intervals throughout the trial. ETHICS AND DISSEMINATION: The trial is approved by relevant institutional review boards/independent ethics committees and is conducted in accordance with the ethical principles of the Declaration of Helsinki, guidelines of Good Clinical Practice, Code of Federal Regulations and all other applicable regulations. Results of this study will determine the potential of ilofotase alfa to reduce mortality in critically ill patients with sepsis-associated AKI and will be published in a peer-reviewed scientific journal. TRIAL REGISTRATION NUMBER: EudraCT CT Number 2019-0046265-24. US IND Number 117 605 Pre-results. CLINICALTRIALS: gov number: NCT04411472.


Subject(s)
Acute Kidney Injury , COVID-19 , Sepsis , Humans , SARS-CoV-2 , Alkaline Phosphatase/therapeutic use , Sepsis/complications , Sepsis/drug therapy , Acute Kidney Injury/etiology , Treatment Outcome , Double-Blind Method , Randomized Controlled Trials as Topic , Multicenter Studies as Topic , Clinical Trials, Phase III as Topic
5.
Nutrition ; 109: 112000, 2023 05.
Article in English | MEDLINE | ID: covidwho-2274462

ABSTRACT

Sepsis is a life-threatening condition characterized by multiorgan dysfunction due to an exaggerated host response to infection associated with a homeostatic failure. In sepsis, different interventions, aimed at improving clinical outcomes, have been tested over the past decades. Among these most recent strategies, intravenous high-dose micronutrients (vitamins and/or trace elements) have been investigated. According to current knowledge, sepsis is characterized by low thiamine levels, which are associated with illness severity, hyperlactatemia, and poor clinical outcomes. However, caution is needed about the clinical interpretation of thiamine blood concentration in critically ill patients, and the inflammatory status, based on C-reactive protein levels, should always be measured. In sepsis, parenteral thiamine has been administered as monotherapy or in combination with vitamin C and corticosteroids. Nevertheless, most of those trials failed to report clinical benefits with high-dose thiamine. The purpose of this review is to summarize the biological properties of thiamine and to examine current knowledge regarding the safety and efficacy of high-dose thiamine as pharmaconutrition strategy when administering singly or in combination with other micronutrients in critically ill adult patients with sepsis or septic shock. Our examination of the most up-to-date evidence concludes that Recommended Daily Allowance supplementation is relatively safe for thiamine-deficient patients. However, current evidence does not support pharmaconutrition with high-dose thiamine as a single therapy or as combination therapy aimed at improving clinical outcomes in critically ill septic patients. The best nutrient combination still needs to be determined, based on the antioxidant micronutrient network and the multiple interactions among different vitamins and trace elements. In addition, a better understanding of the pharmacokinetic and pharmacodynamic profiles of intravenous thiamine is needed. Future well-designed and powered clinical trials are urgently warranted before any specific recommendations can be made regarding supplementation in the critical care setting.


Subject(s)
Sepsis , Shock, Septic , Trace Elements , Adult , Humans , Thiamine/therapeutic use , Trace Elements/therapeutic use , Critical Illness/therapy , Sepsis/complications , Sepsis/drug therapy , Sepsis/diagnosis , Vitamins/therapeutic use , Ascorbic Acid/therapeutic use , Micronutrients/therapeutic use
6.
Int J Mol Sci ; 24(3)2023 Jan 18.
Article in English | MEDLINE | ID: covidwho-2244966

ABSTRACT

Sepsis and COVID-19 patients often manifest an imbalance in inflammation and coagulation, a complex pathological mechanism also named thromboinflammation, which strongly affects patient prognosis. Extracellular vesicles (EVs) are nanoparticles released by cells into extracellular space that have a relevant role in cell-to-cell communication. Recently, EVs have been shown to act as important players in a variety of pathologies, including cancer and cardiovascular disease. The biological properties of EVs in the mechanisms of thromboinflammation during sepsis and COVID-19 are still only partially known. Herein, we summarize the current experimental evidence on the role of EVs in thromboinflammation, both in bacterial sepsis and in COVID-19. A better understanding of EV involvement in these processes could be useful in describing novel diagnostic and therapeutic applications of EVs in these diseases.


Subject(s)
COVID-19 , Extracellular Vesicles , Sepsis , Thrombosis , Humans , Inflammation , Thromboinflammation , COVID-19/complications , Thrombosis/etiology , Extracellular Vesicles/pathology , Sepsis/complications , Sepsis/pathology
7.
Int J Mol Sci ; 24(3)2023 Jan 30.
Article in English | MEDLINE | ID: covidwho-2240601

ABSTRACT

Severe coronavirus disease 2019 (COVID-19) has led to a rapid increase in death rates all over the world. Sepsis is a life-threatening disease associated with a dysregulated host immune response. It has been shown that COVID-19 shares many similarities with sepsis in many aspects. However, the molecular mechanisms underlying sepsis and COVID-19 are not well understood. The aim of this study was to identify common transcriptional signatures, regulators, and pathways between COVID-19 and sepsis, which may provide a new direction for the treatment of COVID-19 and sepsis. First, COVID-19 blood gene expression profile (GSE179850) data and sepsis blood expression profile (GSE134347) data were obtained from GEO. Then, we intersected the differentially expressed genes (DEG) from these two datasets to obtain common DEGs. Finally, the common DEGs were used for functional enrichment analysis, transcription factor and miRNA prediction, pathway analysis, and candidate drug analysis. A total of 307 common DEGs were identified between the sepsis and COVID-19 datasets. Protein-protein interactions (PPIs) were constructed using the STRING database. Subsequently, hub genes were identified based on PPI networks. In addition, we performed GO functional analysis and KEGG pathway analysis of common DEGs, and found a common association between sepsis and COVID-19. Finally, we identified transcription factor-gene interaction, DEGs-miRNA co-regulatory networks, and protein-drug interaction, respectively. Through ROC analysis, we identified 10 central hub genes as potential biomarkers. In this study, we identified SARS-CoV-2 infection as a high risk factor for sepsis. Our study may provide a potential therapeutic direction for the treatment of COVID-19 patients suffering from sepsis.


Subject(s)
COVID-19 , MicroRNAs , Sepsis , Humans , Protein Interaction Maps/genetics , Gene Expression Profiling , Gene Regulatory Networks , COVID-19/genetics , SARS-CoV-2/genetics , MicroRNAs/genetics , Sepsis/complications , Sepsis/genetics , Signal Transduction/genetics , Transcription Factors/genetics , Computational Biology
8.
Niger J Clin Pract ; 26(1): 102-108, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2229777

ABSTRACT

Background: This study aimed to investigate the effects of omega-3 fatty acid use on sepsis and mortality in patients treated for COVID-19 disease in the intensive care unit (ICU) based on clinical and laboratory results. Aim: To determine the effect of omega-3 fatty acid use on sepsis and mortality in patients with COVID-19. Patients and Methods: A total of 80 patients with confirmed COVID-19 infection who were hospitalized in the ICU of Ankara City Hospital, received (n = 40) or did not receive (n = 40) omega-3 fatty acid dietary supplementation, were included in this single-center, retrospective study. The clinical and laboratory data of eligible patients were extracted from the hospital records. Results: The mean age was 65.5 (13.6). The mean length of stay in the intensive care unit was 11.5 (6.3) days. Mortality and sepsis development rates were similar in the groups. The frequency of patients who received pulse steroid therapy was higher in the group of patients who did not receive omega-3 (P < 0.05). Hypertension was more common in the patient group receiving omega-3 supplements (P < 0.05). Mean procalcitonin and interleukin-6 (IL-6) levels were significantly lower in patients who received omega-3 supplements compared to those who did not receive supplements (P < 0.001 and P < 0.05). Mean prothrombin time (PT) was shorter in patients receiving omega-3 supplementation (P < 0.05). Conclusions: Study results obtained in this study indicate that providing omega-3 fatty acid supplements may be beneficial to patients with severe COVID-19, however further research with large-scale randomized controlled trials is necessary.


Subject(s)
COVID-19 , Fatty Acids, Omega-3 , Sepsis , Aged , Humans , COVID-19/complications , COVID-19/mortality , Dietary Supplements , Fatty Acids, Omega-3/therapeutic use , Intensive Care Units , Retrospective Studies , Sepsis/complications
9.
Mol Med ; 29(1): 13, 2023 01 26.
Article in English | MEDLINE | ID: covidwho-2214525

ABSTRACT

BACKGROUND: Acute respiratory distress syndrome (ARDS), a life-threatening condition during critical illness, is a common complication of COVID-19. It can originate from various disease etiologies, including severe infections, major injury, or inhalation of irritants. ARDS poses substantial clinical challenges due to a lack of etiology-specific therapies, multisystem involvement, and heterogeneous, poor patient outcomes. A molecular comparison of ARDS groups holds the potential to reveal common and distinct mechanisms underlying ARDS pathogenesis. METHODS: We performed a comparative analysis of urine-based metabolomics and proteomics profiles from COVID-19 ARDS patients (n = 42) and bacterial sepsis-induced ARDS patients (n = 17). To this end, we used two different approaches, first we compared the molecular omics profiles between ARDS groups, and second, we correlated clinical manifestations within each group with the omics profiles. RESULTS: The comparison of the two ARDS etiologies identified 150 metabolites and 70 proteins that were differentially abundant between the two groups. Based on these findings, we interrogated the interplay of cell adhesion/extracellular matrix molecules, inflammation, and mitochondrial dysfunction in ARDS pathogenesis through a multi-omic network approach. Moreover, we identified a proteomic signature associated with mortality in COVID-19 ARDS patients, which contained several proteins that had previously been implicated in clinical manifestations frequently linked with ARDS pathogenesis. CONCLUSION: In summary, our results provide evidence for significant molecular differences in ARDS patients from different etiologies and a potential synergy of extracellular matrix molecules, inflammation, and mitochondrial dysfunction in ARDS pathogenesis. The proteomic mortality signature should be further investigated in future studies to develop prediction models for COVID-19 patient outcomes.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Sepsis , Humans , COVID-19/complications , Proteomics , Multiomics , Respiratory Distress Syndrome/etiology , Sepsis/complications , Inflammation
10.
Eur J Med Res ; 27(1): 275, 2022 Dec 04.
Article in English | MEDLINE | ID: covidwho-2153678

ABSTRACT

BACKGROUND: Heme oxygenase one (HO-1) is considered a poor prognostic factor for survival in patients with severe-to-critical coronavirus disease (COVID-19), but the clinical correlation between heme catabolism biomarkers and COVID-19-related sepsis is unknown. The etiopathogenetic hypothesis of HO-1 response during sepsis in patients with poor prognosis should be clarified. This study aimed to investigate sepsis development within 48 h following moderate-to-critical COVID-19 and examined heme/HO-1 catabolism biomarkers associated with sepsis. We also studied the HO-1 and traditional prognostic factors for predicting survival in patients with COVID-19. METHODS: This retrospective observational study included patients unvaccinated for COVID-19 with moderate-to-critical COVID-19 (n = 156) who had been admitted to Taipei Tzu Chi Hospital in 2021. All COVID-19 patients were diagnosed by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reverse transcriptase polymerase chain reaction. For analysis of heme catabolism in SARS-CoV-2-induced sepsis, we excluded patients with co-infection and severe anemia. Heme catabolism biomarkers were compared between groups of patients with COVID-19 and sepsis (sepsis) and those with COVID-19 without sepsis (no sepsis), and a control group comprising 100 healthy individuals. All clinical and laboratory data were collected retrospectively and blood specimens were collected from Biobank. Multivariable logistic regression analysis was used to compare all variables between the sepsis and no-sepsis groups. Cox regression analysis was used to determine predictors of survival in patients with COVID-19. RESULTS: There were 71 and 85 patients with and without sepsis, respectively. Heme and HO-1 levels differed significantly between the sepsis, no sepsis, and control groups. In multivariate analysis, confusion, blood urea nitrogen, respiration, blood pressure in patients aged > 65 years (CURB-65) (adjusted odds ratio [aOR] 5.331, 95% confidence interval [CI] 2.587-10.987; p < 0.001), albumin (aOR 0.139, 95% CI 0.003-0.636; p = 0.01), D-dimer (aOR 1.001, 95% CI 1.000-1.002; p = 0.032), and HO-1 (aOR 1.116, 95% CI 1.055-1.180; p < 0.001) were significantly associated with 48-h sepsis episodes after adjusting for other confounding factors. HO-1 levels were also significantly associated with 48-h Sequential Organ Failure Assessment Score (SOFA) scores. However, HO-1 did not significantly increase the hazard of in-hospital mortality in moderate-to-critical COVID-19 by Cox regression analysis. CONCLUSIONS: HO-1 levels increased with sepsis development within 48 h of admission for COVID-19 after adjusting for other risk factors, but no significant association was observed between HO-1 and COVID-19 mortality. We suppose that HO-1 may have protective effect in early sepsis, but further clinical multicenter prospective studies are needed.


Subject(s)
COVID-19 , Sepsis , Humans , Heme Oxygenase (Decyclizing) , Retrospective Studies , SARS-CoV-2 , Sepsis/complications , Heme
11.
Phytomedicine ; 109: 154549, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2120476

ABSTRACT

BACKGROUND: Acute lung injury (ALI) is a common complication of sepsis with poor effective interventions. Huashibaidu formula (HSBD) showed good therapeutic effects in treating coronavirus disease 2019 (COVID-19) patients. PURPOSE: This study was designed to investigate the therapeutic potential and precise mechanism of HSBD against sepsis-induced ALI based on network pharmacology and animal experiments. MATERIALS AND METHODS: Network pharmacology was used to predict the possible mechanism of HSBD against sepsis. Next, a sepsis-induced ALI rat model via intraperitoneal lipopolysaccharide (LPS) was constructed to evaluate the level of inflammatory cytokines and the degree of lung injury. The expression of inflammation-related signaling pathways, including TLR4/NF-κB and PI3K/Akt was determined by western blot. RESULTS: Network pharmacology analysis indicated that HSBD might have a therapeutic effect on sepsis mainly by affecting inflammatory and immune responses. Animal experiments demonstrated that HSBD protected the lung tissue from LPS-induced injury, and inhibited the levels of inflammatory cytokines such as interleukin (IL)-1ß, granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon (IFN)-γ and tumor necrosis factor (TNF)-α in the serum and IL-1ß, IL-5, IL-6, IL-18, GM-CSF, IFN-γ and TNF-α in the lung tissue. Western blot results revealed that HSBD downregulated the expression of TLR4/NF-κB and upregulated the expression of PI3K/Akt. CONCLUSION: The therapeutic mechanism of HSBD against sepsis-induced ALI mainly involved suppressing cytokine storms and relieving inflammatory symptoms by regulating the expression of TLR4/NF-κB and PI3K/Akt. Our study provides a scientific basis for the mechanistic investigation and clinical application of HSBD in the treatment of sepsis and COVID-19.


Subject(s)
Acute Lung Injury , Cytokine Release Syndrome , Sepsis , Animals , Rats , Acute Lung Injury/drug therapy , Acute Lung Injury/etiology , COVID-19 , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/virology , Cytokines/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt/metabolism , Sepsis/complications , Sepsis/drug therapy , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism
12.
Clin Nutr ESPEN ; 52: 250-253, 2022 12.
Article in English | MEDLINE | ID: covidwho-2120024

ABSTRACT

BACKGROUND AND AIM: The aim of this study was to analyze central line-associated bloodstream infections (CLABSI) in home parenteral nutrition (HPN) patients assisted by an interdisciplinary team during the first year of the COVID-19 pandemic in Argentina. METHODS: Longitudinal, retrospective and analytical study of patients on HPN for ≥90 days during 2020. Data collection included age (adults >18 years, pediatric ≤18 years), gender, diagnosis, type of catheter, number of lumens, venous access, days on HPN, infusion modality and number of CLABSI-associated events. In COVID-19 cases, number of patients, disease progression, mortality rate and microorganisms involved were analyzed. RESULTS: A total of 380 patients were included, 120 (31.6%) pediatric and 260 (68.4%) adult patients. Median age was 44.50 years (10; 62.25). Twelve patients (3.15% of the total) had COVID-19; of these, two pediatric and seven adult patients had no complications, and three adults died of COVID-19 pneumonia. The diagnoses observed were benign chronic intestinal failure (CIF, n = 311), grouped into short bowel (n = 214, 56.3%), intestinal dysmotility (n = 56, 14.7%), intestinal fistula (n = 20, 5.3%), and extensive small bowel mucosal disease (n = 21, 5.5%); malignant tumors (n = 52, 13.7%); other (n = 17, 4.4%). Total catheter days were 103,702. Median days of PN duration per patient were 366 (176.2, 366). The types of catheters used were tunneled (317 patients, 83.4%); peripherally inserted central (PICC) line (55 patients, 14.5%) and ports (8 patients; 2.1%). A total of 111 CLABSI was registered, with a prevalence of 1.09/1000 catheter days (adult, 0.86/1000 days; pediatric, 1.51/1000 days). The microorganisms identified in infectious events were Gram + bacteria (38, 34.5%); Gram-bacteria (36, 32%); mycotic (10, 9%); polymicrobial (4, 3.6%); negative culture and signs/symptoms of CLABSI (23, 20.3%). The odds ratio between pediatric and adult patients was 2.29 (1.35, 3.90). CONCLUSION: The rate of CLABSI during the COVID-19 pandemic was within the ranges reported by international scientific societies. The risk of CLABSI was higher in pediatric patients, and mortality rate in COVID-19 infected patients was higher than in the general population.


Subject(s)
COVID-19 , Catheter-Related Infections , Intestinal Diseases , Parenteral Nutrition, Home , Sepsis , Adult , Humans , Child , Adolescent , Catheter-Related Infections/epidemiology , Catheter-Related Infections/microbiology , Retrospective Studies , Pandemics , COVID-19/complications , Parenteral Nutrition, Home/adverse effects , Sepsis/complications
13.
Int J Mol Sci ; 23(20)2022 Oct 18.
Article in English | MEDLINE | ID: covidwho-2082320

ABSTRACT

Recent research has contributed significantly to our understanding of the pathogenesis of acute disseminated intravascular coagulation. COVID-19 can be considered as a new underlying condition of disseminated intravascular coagulation. In this narrative review, current evidence is presented regarding biomarker differences between sepsis-induced and COVID-19-associated coagulopathies, supporting the importance of acquired antithrombin deficiency in the early differential diagnosis of septic coagulopathy and its potential impact on treatment with endogenous anticoagulants. Establishing new scoring systems for septic coagulopathy in combination with endogenous anticoagulant biomarker activities may allow for the identification of those in the heterogeneous population of sepsis patients who are more likely to benefit from targeted specific treatment interventions.


Subject(s)
Blood Coagulation Disorders , COVID-19 , Disseminated Intravascular Coagulation , Sepsis , Humans , Disseminated Intravascular Coagulation/drug therapy , Disseminated Intravascular Coagulation/etiology , Antithrombins/therapeutic use , COVID-19/complications , Anticoagulants/therapeutic use , Anticoagulants/pharmacology , Blood Coagulation Disorders/complications , Sepsis/complications , Antithrombin III , Biomarkers
14.
BMJ Case Rep ; 15(10)2022 Oct 03.
Article in English | MEDLINE | ID: covidwho-2064081

ABSTRACT

Improving maternal and child health is a global priority. Although infection with Listeria monocytogenes (LM), a small facultative anaerobic, gram-positive motile bacillus is rare, when it infects the maternal-fetoplacental unit, it can result in adverse fetal sequelae such as chorioamnionitis, preterm labour, neonatal sepsis, meningitis and neonatal death. Pregnancy-associated listeriosis may present with a plethora of diverse, non-specific symptoms such as fever, influenza-like or gastrointestinal symptoms, premature contractions and preterm labour. It has a predilection for the second and third trimester of pregnancy, occurring sporadically or as part of an outbreak, most of which have involved unpasteurised dairy products, long shelf life products, contaminated ready-to-eat food, deli meats and soft cheeses. Strains belonging to the clonal complexes 1, 4 and 6 are hypervigilant and are commonly associated with maternal-neonatal infections. Maternal listeriosis occurs as a direct consequence of LM-specific placental tropism, which is mediated by the conjugated action of internalin A and internalin B at the placental barrier. The diagnosis is established from placental culture. Penicillin, ampicillin and amoxicillin are the antimicrobials of choice. It has a high fetal morbidity of up to 30%. The authors present the case of a multiparous woman in her early 20s presenting with sepsis and preterm premature rupture of her membranes at 21 weeks gestation. A live baby was delivered spontaneously and died shortly after birth. Placental cultures and postmortem examination were consistent with the diagnosis of disseminated Listeria infection. Due to the increased susceptibility of pregnant women for LM, a high index of clinical suspicion is required to establish the diagnosis and initiate appropriate antimicrobial therapy to reduce adverse fetal outcomes.


Subject(s)
Listeria monocytogenes , Listeriosis , Obstetric Labor, Premature , Pre-Eclampsia , Pregnancy Complications, Infectious , Sepsis , Amoxicillin , Child , Female , Humans , Infant, Newborn , Listeriosis/complications , Listeriosis/diagnosis , Listeriosis/drug therapy , Penicillins , Placenta , Pregnancy , Pregnancy Complications, Infectious/diagnosis , Sepsis/complications
15.
PLoS Pathog ; 18(9): e1010819, 2022 09.
Article in English | MEDLINE | ID: covidwho-2039445

ABSTRACT

BACKGROUND: Acute respiratory distress syndrome (ARDS), a life-threatening condition characterized by hypoxemia and poor lung compliance, is associated with high mortality. ARDS induced by COVID-19 has similar clinical presentations and pathological manifestations as non-COVID-19 ARDS. However, COVID-19 ARDS is associated with a more protracted inflammatory respiratory failure compared to traditional ARDS. Therefore, a comprehensive molecular comparison of ARDS of different etiologies groups may pave the way for more specific clinical interventions. METHODS AND FINDINGS: In this study, we compared COVID-19 ARDS (n = 43) and bacterial sepsis-induced (non-COVID-19) ARDS (n = 24) using multi-omic plasma profiles covering 663 metabolites, 1,051 lipids, and 266 proteins. To address both between- and within- ARDS group variabilities we followed two approaches. First, we identified 706 molecules differently abundant between the two ARDS etiologies, revealing more than 40 biological processes differently regulated between the two groups. From these processes, we assembled a cascade of therapeutically relevant pathways downstream of sphingosine metabolism. The analysis suggests a possible overactivation of arginine metabolism involved in long-term sequelae of ARDS and highlights the potential of JAK inhibitors to improve outcomes in bacterial sepsis-induced ARDS. The second part of our study involved the comparison of the two ARDS groups with respect to clinical manifestations. Using a data-driven multi-omic network, we identified signatures of acute kidney injury (AKI) and thrombocytosis within each ARDS group. The AKI-associated network implicated mitochondrial dysregulation which might lead to post-ARDS renal-sequalae. The thrombocytosis-associated network hinted at a synergy between prothrombotic processes, namely IL-17, MAPK, TNF signaling pathways, and cell adhesion molecules. Thus, we speculate that combination therapy targeting two or more of these processes may ameliorate thrombocytosis-mediated hypercoagulation. CONCLUSION: We present a first comprehensive molecular characterization of differences between two ARDS etiologies-COVID-19 and bacterial sepsis. Further investigation into the identified pathways will lead to a better understanding of the pathophysiological processes, potentially enabling novel therapeutic interventions.


Subject(s)
Acute Kidney Injury , COVID-19 , Janus Kinase Inhibitors , Respiratory Distress Syndrome , Sepsis , Thrombocytosis , Arginine , COVID-19/complications , Humans , Interleukin-17 , Lipids , Respiratory Distress Syndrome/etiology , Sepsis/complications , Sphingosine
16.
BMC Pulm Med ; 22(1): 339, 2022 Sep 07.
Article in English | MEDLINE | ID: covidwho-2038719

ABSTRACT

BACKGROUND: No consensus has been reached on an optimal blood lactate evaluation system although several approaches have been reported in the literature in recent years. A group-based trajectory modeling (GBTM) method could better stratify patients with acute respiratory distress syndrome (ARDS) complicated with sepsis in the intensive care unit (ICU). PATIENTS AND METHODS: 760 patients from the comprehensive ICU of Tianjin Medical University General Hospital with ARDS complicated with sepsis were eligible for analysis. Serial serum lactate levels were measured within 48 h of admission. In addition to the GBTM lactate groups, the initial lactate, peak lactate level, the area under the curve of serial lactate (lactate AUC), and lactate clearance were also considered for comparison. The short- and long-term outcomes were the 30- and 90-day mortality, respectively. RESULTS: Three lactate groups were identified based on GBTM, with group 3 exhibiting the worse short- [hazard ratio (HR) for 30-day mortality: 2.96, 95% confidence interval (CI) 1.79-4.87, P < 0.001] and long term (HR for 90-day mortality: 3.49, 95% CI 2.06-5.89, P < 0.001) outcomes followed by group 2 (HR for 30-day mortality: 2.05, 95% CI 1.48-2.84, P < 0.001 and HR for 90-day mortality: 1.99, 95% CI 1.48-2.67, P < 0.001). GBTM lactate groups exhibited significantly improved diagnostic performance of initial lactate + SOFA scores/APACHE II scores models. Based on the multivariable fractional polynomial interaction (MFPI) approach, GBTM lactate groups could better differentiate high-risk patients than the initial lactate groups in short- and long-term outcomes. CONCLUSIONS: To the best of our knowledge, this is the first report that GBTM-based serial blood lactate evaluations significantly improve the diagnostic capacity of traditional critical care evaluation systems and bring many advantages over previously documented lactate evaluation systems.


Subject(s)
Respiratory Distress Syndrome , Sepsis , APACHE , Humans , Lactic Acid , Respiratory Distress Syndrome/diagnosis , Risk Assessment , Sepsis/complications , Sepsis/diagnosis
17.
Sci Rep ; 12(1): 15703, 2022 09 20.
Article in English | MEDLINE | ID: covidwho-2036882

ABSTRACT

Severe Coronavirus disease 2019 (COVID-19) is associated with several pre-existing comorbidities and demographic factors. Similar factors are linked to critical sepsis and acute respiratory distress syndrome (ARDS). We hypothesized that age and comorbidities are more generically linked to critical illness mortality than a specific disease state. We used national databases to identify ICU patients and to retrieve comorbidities. The relative importance of risk factors for 60-day mortality was evaluated using the interaction with disease group (Sepsis, ARDS or COVID-19) in logistic regression models. We included 32,501 adult ICU patients. In the model on 60-day mortality in sepsis and COVID-19 there were significant interactions with disease group for age, sex and asthma. In the model on 60-day mortality in ARDS and COVID-19 significant interactions with cohort were found for acute disease severity, age and chronic renal failure. In conclusion, age and sex play particular roles in COVID-19 mortality during intensive care but the burden of comorbidity was similar between sepsis and COVID-19 and ARDS and COVID-19.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Sepsis , Adult , COVID-19/epidemiology , Comorbidity , Demography , Humans , Intensive Care Units , Respiratory Distress Syndrome/epidemiology , Sepsis/complications , Sepsis/epidemiology
18.
Int J Mol Sci ; 23(17)2022 Aug 31.
Article in English | MEDLINE | ID: covidwho-2023751

ABSTRACT

Pneumonia is an acute infectious disease with high morbidity and mortality rates. Pneumonia's development, severity and outcome depend on age, comorbidities and the host immune response. In this study, we combined theoretical and experimental investigations to characterize pneumonia and its comorbidities as well as to assess the host immune response measured by TREC/KREC levels in patients with pneumonia. The theoretical study was carried out using the Columbia Open Health Data (COHD) resource, which provides access to clinical concept prevalence and co-occurrence from electronic health records. The experimental study included TREC/KREC assays in young adults (18-40 years) with community-acquired (CAP) (n = 164) or nosocomial (NP) (n = 99) pneumonia and healthy controls (n = 170). Co-occurring rates between pneumonia, sepsis, acute respiratory distress syndrome (ARDS) and some other related conditions common in intensive care units were the top among 4170, 3382 and 963 comorbidities in pneumonia, sepsis and ARDS, respectively. CAP patients had higher TREC levels, while NP patients had lower TREC/KREC levels compared to controls. Low TREC and KREC levels were predictive for the development of NP, ARDS, sepsis and lethal outcome (AUCTREC in the range 0.71-0.82, AUCKREC in the range 0.67-0.74). TREC/KREC analysis can be considered as a potential prognostic test in patients with pneumonia.


Subject(s)
Pneumonia , Respiratory Distress Syndrome , Sepsis , Critical Illness , Humans , Intensive Care Units , Pneumonia/epidemiology , Respiratory Distress Syndrome/epidemiology , Sepsis/complications , Sepsis/epidemiology , Young Adult
19.
Rev Med Chil ; 150(2): 266-270, 2022 Feb.
Article in Spanish | MEDLINE | ID: covidwho-1988174

ABSTRACT

Sepsis is one of the leading causes of death in critically ill patients with COVID-19 and blood purification therapies have a role to immunomodulate the excessive inflammatory response and improve clinical results. One of the devices designed for these therapies is the oXiris® filter, allowing to perform renal replacement therapy combined with selective adsorption of endotoxins and cytokines. We report a 55-year-old male with COVID who developed a septic shock secondary to a sepsis caused by Pseudomona aeruginosa, refractory to the usual management. A veno-venous continuous hemofiltration was started using the oXiris® filter for 48 hours. Subsequently, there was an improvement in clinical perfusion parameters and a reduction in inflammatory markers. The patient was discharged from the intensive care one month later.


Subject(s)
COVID-19 , Sepsis , Shock, Septic , COVID-19/complications , Cytokines , Endotoxins , Humans , Male , Middle Aged , Sepsis/complications , Shock, Septic/complications , Shock, Septic/therapy
20.
JCI Insight ; 7(14)2022 07 22.
Article in English | MEDLINE | ID: covidwho-1962552

ABSTRACT

Acute lung injury (ALI) can cause acute respiratory distress syndrome (ARDS), a lethal condition with limited treatment options and currently a common global cause of death due to COVID-19. ARDS secondary to transfusion-related ALI (TRALI) has been recapitulated preclinically by anti-MHC-I antibody administration to LPS-primed mice. In this model, we demonstrate that inhibitors of PTP1B, a protein tyrosine phosphatase that regulates signaling pathways of fundamental importance to homeostasis and inflammation, prevented lung injury and increased survival. Treatment with PTP1B inhibitors attenuated the aberrant neutrophil function that drives ALI and was associated with release of myeloperoxidase, suppression of neutrophil extracellular trap (NET) formation, and inhibition of neutrophil migration. Mechanistically, reduced signaling through the CXCR4 chemokine receptor, particularly to the activation of PI3Kγ/AKT/mTOR, was essential for these effects, linking PTP1B inhibition to promoting an aged-neutrophil phenotype. Considering that dysregulated activation of neutrophils has been implicated in sepsis and causes collateral tissue damage, we demonstrate that PTP1B inhibitors improved survival and ameliorated lung injury in an LPS-induced sepsis model and improved survival in the cecal ligation and puncture-induced (CLP-induced) sepsis model. Our data highlight the potential for PTP1B inhibition to prevent ALI and ARDS from multiple etiologies.


Subject(s)
Acute Lung Injury , COVID-19 , Respiratory Distress Syndrome , Sepsis , Acute Lung Injury/metabolism , Animals , Lipopolysaccharides/pharmacology , Mice , Neutrophils , Respiratory Distress Syndrome/etiology , Sepsis/complications
SELECTION OF CITATIONS
SEARCH DETAIL